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Abstract

Asset backed securities (ABSs) are structured finance products backed by pools of assets
and are created through a securitization process. The assessment of asset backed securities
is given by ratings partly based on a quantitative model for the defaults and prepayments of
the assets in the pool. This mathematical approach contains a number of assumptions and
estimations of input variables whose values are affected by uncertainty. The uncertainty in
these variables propagates through the model and produces uncertainty in the ratings. In the
present paper we propose to work with global sensitivity analysis techniques to investigate
ABS ratings sensitivity to the input parameters and we introduce a novel structured financial
rating to take into account uncertainty in assessment when rating ABSs.
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1 INTRODUCTION

An asset-backed security (ABS) is a security created through a securitization process whose
value and income payments are backed by a specific pool of underlying assets. Illiquid assets
that can not be sold individually (e.g mortgages, car loans, and SME loans) are pooled together
and transferred to a shell entity specially created to be bankruptcy remote (a so called Special
Purpose Vehicle (SPV)) which in turn issues notes (liabilities) to investors with distinct risk
return profiles and different maturities. This process is called securitization.

The valuation of securitization transactions is given by ratings addressing the different risks
inherent in a structure and how well these risks are mitigated. The rating process is party
based on quantitative analysis of how the transaction mitigates default and prepayment sce-
narios. These scenarios are generated by more or less sophisticated models with one or more
parameters. Typically the input parameters are unknown and estimated from historical data
or given by expert opinions. In any way, the values used for the parameters are uncertain and
these uncertainties are propagated through the model and generates uncertainty in the rating
output. For an introduction to ABS and the risks and the rating methodology see Jönsson and
Schoutens (2009), Jönsson and Schoutens (2010), and Jönsson et al. (2009).

There have been an increased attention to the rating of asset backed securities during the
credit crisis 2007−2008 due to the enormous losses anticipated by investors and the huge amount
of downgrades among structured finance products. Rating agency have been encouraged to
sharpen their methodologies and to provide more clarity to the limitations of their ratings and
the sensitivity of those ratings to the risk factors accounted for in their rating methodologies
(see, e.g., Moody’s Investor Service (2000), Moody’s Investor Service (2009), and IMF Global
Stability Report, April 2008, p. 81). Moody’s in Moody’s Investor Service (2000) has introduced
the volatility scores (V Scores). They are a technique based on a qualitative analysis to assess
the quality of available credit information and the potential variability around various inputs
to a rating determination. Moody’s in Moody’s Investor Service (2009) provides a calculation
of the number of rating notches that a Moody’s rated structured finance security may vary if
certain input parameters differed. Here two input parameters, the mean portfolio default rate
and the mean recovery rate, have been stressed by using several combinations of possible values.
This is a quantitative analysis that highlights how changes in the two input parameters, mean
and recovery rate, can affect the rating determination. In IMF Global Stability Report (April
2008, p. 82), it has also been suggested that a rating scale different than the one used for
corporate and sovereign bonds should be used.

Starting from these considerations, the objectives of this paper are two fold. Firstly, we
advocate the use of techniques to enhance the understanding of the variability of the ratings due
to the uncertainty in the input parameters used. Uncertainty analysis assesses and quantifies
the variability in the output of interest due to the variability in the inputs. Uncertainty analysis
can be paired with a global sensitivity analysis, which is used to understand the main sources
of output uncertainties and how the uncertainty in the output can be allocated to the different
sources of uncertainty in the inputs. We quantify the percentage of output variance that each
input factor is accounting for and we also detect how interactions among input parameters affect
the rating variability exploring the whole input space (see Saltelli et al. (2008) and Saltelli et al.
(2004)). The idea is to answer to the following questions: Is the rating of an ABS reliable? Where
does the uncertainty come from, i.e. which input factors are more important in determining the
uncertainty in the rating response? Can I quantify the exact percentage of the variability in the
output that can be allocated to each input?

Secondly, we propose a novel rating approach called global rating, that takes this uncertainty
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in the output into account when assigning ratings to tranches. The global ratings should there-
fore become more stable and reduce the risk of cliff effects, that is, that a small change in one or
several of the input assumptions generates a dramatic change of the rating. The global rating
methodology proposed gives one answer of a way forward for the rating of structure finance
products.

The rest of the paper is outline as follows. In the next section we give an introduction to
ABS, we describe the basic steps of modelling the cash flows produces by the asset pool, we
point out the collection of the cash flows and the distribution of these cash flows to the liabilities
and we outline the procedure to get ratings.

A description of general elements of SA is provided in Section 3 with a particular attention
to the techniques used in this paper.

Section 4 analyses in depth the ratings to improve the assessment of the risk embedded in
ABSs structure. Uncertainty analysis is used to detect the uncertainty inside the model and
sensitivity analysis techniques are applied to determine the responsible of it. An attempt to
take into account this uncertainty when rating ABSs is proposed in Section 5. The paper ends
with a conclusion.
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2 ASSET-BACKED SECURITIES

Asset-backed securities (ABSs) are securities created through a securitization process whose
value and income payments are backed by a specific pool of underlying assets (see Fabozzi and
Kothari (2008)). Illiquid assets cannot be sold individually so that they are pooled together
by the originator (Issuer) and transferred to a shell entity specially created to be bankruptcy
remote, (a so called Special Purpose Vehicle (SPV)) which in turn issues notes (liabilities) to
investors with distinct risk return profiles and different maturities: senior, mezzanine, and junior
notes. This technique is called tranching of the liability. Cash flows generated by the underlying
assets are used to service the notes; the risk of the underlying assets results to be diversified
because each security now is representing a fraction of the total pool value. Figure 1 shows a
general ABS structure.

Figure 1: ABS general structure.

The assessment of the ABS is related with the risks inherent in the structure. The ratings
are indicators of the credit risk embedded in these instruments. To derive a final rating of
asset-backed securities, rating agencies combine both a qualitative assessment and quantitative
analysis, which assess the originator’s and the servicer’s operations and legal issues concerning
the transfer of the assets from the originator to the issuer (Moody’s Investor Service (2001),
Moody’s Investor Service (2007a) and Standard and Poor’s (2007)).

The qualitative assessment is described in detail in the deal’s prospectus and it is mostly a
matter of translating legal descriptions of how the available funds should be distributed among
different stake holders (issuer, servicer, ABS investors, counterparties, etc.). The quantitative
analysis relies on modelling of the cash flows produced by the assets (based on default and
prepayment models of different level of sophistication), the collections of these cash flows and
the distribution of the cash flows to the liabilities according to a payment priority (waterfall).

In this section, we introduce the ABS structure we are going to use in the numerical experi-
ment, we describe the basic steps of modelling the cash flows produced by the assets in the pool
(default models), we point out the collection of the cash flows and the distribution of these cash
flows to the liabilities and we outline the rating of asset-backed securities.
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2.1 The ABS structure for the experiment

Through out the paper we assume that the pool is homogeneous, i.e., that all the constituents
of the pool are identical with respect to initial amount, maturity, coupon, amortisation and
payment frequency, see Table 1, and with respect to risk profile (i.e. probability of default).
This implies that the pool is assumed behave as the average of the assets in the pool. We also
assume the pool to be static, i.e. no replenishment is done.

Collateral

Number of loans 2,000
Initial principal amount 100,000,000
Weighted average maturity 5 years
Weighted average coupon (per annum) 9%
Amortisation Level-Pay
Payment frequency Monthly

Table 1: Collateral characteristics.

This collateral pool is backing three classes of notes: A (senior), B (mezzanine), and C (ju-
nior). The details of the notes are given in Table 2 together with other structural characteristics.
To this basic liability structure we have added a cash reserve account.

Liabilities

Class Initial Interest Credit
of Principal Rate enhance-
Notes Amount (per annum) ment (%)

A 80,000,000 1% 20%
B 14,000,000 2% 6%
C 6,000,000 4% 0%

General Features

Final Maturity 10 years
Payment frequency Monthly
Principal allocation Sequential
Shortfall rate (per annum) Applicable note coupon

Senior expenses

Issuer fees 1% of Outstanding Pool Balance
Servicer fees 1% of Outstanding Pool Balance
Payment frequency Monthly
Shortfall rate (per annum) 20%

Cash reserve

Target amount 1% of Outstanding Pool Balance
Minimum required amount 0% of Outstanding Pool Balance

Table 2: Liability and structural characteristics.

The priority of payments of the structure, the waterfall, is presented in Table 3. The waterfall
is a so called combined waterfall where the available funds at each payment date constitutes of
both interest and principal collections.
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Waterfall

Level Basic amortisation

1) Issuer expenses
2) Servicer expenses
3) Class A interest
4) Class B interest
5) Class A principal
6) Class B principal
7) Reserve account reimburs.
8) Class C interest
9) Class C principal
10) Class C additional returns

Table 3: The waterfall used in the analysis.

The assessment of risk embedded in this ABS structure is given by ratings based on quanti-
tative assessment of the cash flow produced by the assets and how these are distributed to the
liability.

2.2 Cash flow modelling

The modelling of the cash flows produced by the assets in the pool is based on default and
prepayment models. To simplify the experiment the loans are assumed to be able to default
but not prepay. The approach followed by Moody’s to analyze Small Medium Enterprize (SME)
transactions depends on the size and granularity of the underlying portfolio (Moody’s Investor
Service (2007b)).

If the portfolio is non granular, the defaults can be generated by factor models, typically
the Gaussian one-factor copula model or its multi-factor version. In this case the defaults are
generated by simulating the individual assets defaults, combined with stochastic recovery rates.
See, for example, Moody’s CDOROMTM .

For a granular portfolio, as the one in our experiment, the default scenarios can be generated
by slicing a default distribution in thin slice (see Figure 2), each slice representing a cumulative
default rate scenario. The probability of each scenario is given by the default distribution.

These cumulative default rate scenarios are then distributed over the life of the pool using
one or several default timing vectors, preferably estimated from historical default patterns (see
Jönsson and Schoutens (2009)).

Instead of slicing the distribution we use Monte Carlo simulations that have the benefit of
giving error estimates of the output in the form of confidence intervals. Different default scenar-
ios are generated by first sampling a cumulative portfolio default rate from a default distribution
and then distribute this default rate over time with the help of a default curve. The default
distribution of the pool is assumed to follow a Normal Inverse distribution in accordance with
Moody’s methodology and the default curve is modelled by the Logistic model. These dis-
tributions are characterised by input parameters which have to be given by expert opinions or
estimated from historical data on the performance on the asset pools with similar characteristics
as the asset pool under consideration. Moreover if the asset pool is revolving, that is, new assets
are added to the pool when existing assets are removed from the pool due to repayments or de-
faults, the uncertainty of the pool performance is even more uncertain. Thus, the quantitative
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Figure 2: Illustration of a default distribution. The 20% Default Scenario and its associated
probability is marked with a bar.

analysis introduces an exposure to parameter uncertainty. Under the assumption to set up the
default models by using these two distributions we do not have to take into account the model
uncertainty and we let just the uncertainty in the parameters which have to be fixed at the
beginning. The impact of model choice has been presented in Jönsson and Schoutens (2010)
and Jönsson et al. (2009).

Recovery rate and recovery timing assumptions have to be added to each default scenario.
See, for example, Moody’s Investor Service (2006)).

The default distribution - Normal Inverse

Let PDR(T ) denote the portfolio default rate at time T of our large homogeneous portfolio.
The distribution of PDR(T ) is given by the the following Normal Inverse:

FPDR(T )(y) = P [PDR(T ) < y] = Φ

(√
1− ρΦ−1(y)− Φ−1(p(T ))

√
ρ

)
(1)

where 0% ≤ y ≤ 100%, ρ is the obligor correlation and p(T ) is the probability of default by T
of a single obligor in the pool.

This Normal Inverse distribution to generate default scenarios is derived as an approximation
to the distribution of the portfolio default rate at maturity T when the Gaussian one-factor model
is used to model the defaults in a large homogeneous portfolio where the number of assets in
the pool is assumed to grow to infinity.

The default distribution in (1) is a function of the obligor correlation, ρ, and the default
probability, p(T ), which are unknown and unobservable. Instead of using these parameters as
inputs it is common to fit the mean and standard deviation of the distribution to the mean
and standard deviation, respectively, estimated from historical data (see, for example, Moody’s
Investor Service (2007b) and Raynes and Rutledge (2003)). Let us denote by µcd and σcd the
estimated mean and standard deviation, respectively.

The mean of the distribution is equal to the probability of default for a single obligor, p(T ),
so p(T ) = µcd. As a result there is only one free parameter, the correlation ρ, left to adjust to
fit the distribution’s standard deviation to σcd, which can be done numerically by minimizing
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σcd−V arρ(PDR(T )), where the subscript in V arρ is used to show that the variance is a function
of ρ. Figure 3 shows some typical examples of Normal Inverse distributions.
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Figure 3: Portfolio default rate for different values of ρ and/or p(T ).

The default curve - Logistic Function

The default curve represents the cumulative portfolio default rate evolution over time and it is
thus used to distribute the default in the pool over time. It provides the percentage of the total
cumulative default rate that will be applicable in each month. The curve should therefore be
monotonically increasing and the slope of the curve should be always non negative.

The function used to model the default timing will be a common sigmoid curve: the Logistic
Function (see Figure 4). The name has been given in 1838 by Pierre François Verhulst who
modelled the S-shaped curve of growth of some populations with this function (see Richards
(1959), and Verhulst (1838)). This function is the among the simplest non linear curves and
it finds application in a range of fields including biology, sociology, economics, probability, and
statistics. In its most basic form, the logistic dynamic has been expressed by the following
Ordinary Differential Equation (ODE):

dF (t)

dt
= c

(
1− F (t)

a

)
P (t), (2)

and it is easy to derive the solution:

F (t) = a
1+( a

F0
−1)e−c(t−t0)

.

In order to simplify the expression and without loss of generality, ( a
F0

− 1) will be considered
just as one parameter, b, such that the expression can be rewritten as follows:
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F (t) =
a

1 + be−c(t−t0)
, 0 ≤ t ≤ T, (3)

where a, b, c, and t0 are positive constants. Parameter a controls the right endpoint of the curve.
In fact, for large values of T in the ABS model, a can be considered a good approximation of
the cumulative default rate of the pool at maturity since limt→+∞F (t) = a. Thus, we can
easily use the Logistic function in a Monte Carlo based scenario generator. All we have to do
is to generate stochastic default scenario by sampling the cumulative portfolio default rate, a,
from the Normal Inverse distribution. Due to the high computational cost of the ABS model,
we use Quasi-Monte Carlo approach based on Sobol sequences to get a faster convergence of
our model. Sobol sequences, in fact, are called quasi-random sequences and they generate a
sample of points as uniformly as possible with the advantage of faster convergence after relative
few runs in comparison with Monte Carlo1 (See Kucherenko (2008), Kucherenko et al. (2010),
Kucherenko (2007), and Kucherenko et al. (2000).) By using this approach, we speed up the
simulation and we get the model convergence with just 214 sampled cumulative default rate, a.
They have been generated from the normal inverse distribution by using Sobol sequences and
we run our model for each of them.

Parameter b is a curve adjustment factor. Early increase in the default rate can be achieved
by setting b to a low value. Increasing b means delaying the steeping of the default curve.
Parameter c is a spreading factor determining how spread out the curve is around t0. It can be
thought of as the standard deviation of the default curve. Parameter t0 is the inflection point
of the model: F (t) grows at an increasing rate before t0 and at a decreasing rate afterwards. It
is controlling the time point of the maximum marginal defaults. If b = 1, the curve becomes
symmetric around t0.

The shape of the Logistic function and the influence of the parameters are illustrated in
Figure 4.

Note that F (0) ̸= 0, so in order to have no defaults in the pool at inception we must subtract
F (0) from F (t), for all t. We also want a to be the cumulative portfolio default rate at maturity,
i.e. F (T )− F (0) = a. Thus the normalized Logistic function we will use as default model is:

F̂ (t) = (F (t)− F (0))
a

F (T )− F (0)
, t ≥ 0.

The monthly fraction of defaults at month tm is given by

p̂(tm) = F̂ (tm)− F̂ (tm−1), m = 1, 2, . . . ,M,

and the cumulative default rate at time tm∑m
i=1 p̂(ti) = F̂ (tm), m = 1, 2, . . . ,M.

2.3 Collection and distribution of the cash flows

After generating defaults in the pool under a fixed set of input parameters, we point out here
briefly the monthly collection and distribution of the cashflows.

We denote by tm, m = 0, 1, . . . ,M the payment date at the end of month m, with t0 = 0
being the closing date of the deal and tM = T being the final legal maturity date.

1The efficiency of MC methods is determined by the proprieties of the random numbers. It is know that
random sampling is prone to clustering: for any sampling there are always empty areas as well as regions in which
random points are wasted due to clustering.
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Figure 4: The Logistic function and its derivative for different values of b, c, and t0. Parameter
values: a = 1 and T = 60.

The cash collections each month from the asset pool consists of interest payments and prin-
cipal collections (scheduled repayments) and together with the principal balance of the reserve
account constitute available funds.
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Asset behavior

We begin by modelling the asset behavior for the current month, say m. The number of per-
forming loans in the pool at the end of month m will be denoted by N(tm). We denote by
nD(tm) the number of defaulted loans in month m coming from the Monte Carlo simulation.
Note that

N(tm) = N(tm−1)− nD(tm).

Default principal

Defaulted principal is based on previous months ending principal balance times number of de-
faulted loans in current month:

PD(tm) = B(tm−1) · nD(tm),

where B(tm) is the outstanding principal amount at time tm of an individual loan and B(0) is
the initial outstanding principal amount.

Interest collections

Interest collected in month m is calculated on performing loans, i.e., previous months ending
number of loans less defaulted loans in current month:

I(tm) = (N(tm−1)− nD(tm)) ·B(tm) · rL,

where N(0) is the initial number of loans in the portfolio and rL is the loan interest rate. It is
assumed that defaulted loans pay neither interest nor principal.

Principal collections

Scheduled repayments are based on the performing loans from the end of previous month less
defaulted loans:

PSR(tm) = (N(tm−1)− nD(tm)) ·BA(tm),

where BA(tm) is scheduled principal amount paid from one single loan.

Recoveries

We will recover a fraction of the defaulted principal after a time lag, TRL, the recovery lag:

PRec(tm) = PD(tm − TRL) ·RR(tm − TRL),

where RR is the Recovery Rate.

Available Funds

The available funds in each month, assuming that total principal balance of the cash reserve
account (BCR) is added, is:

I(tm) + PSR(tm) + PRec(tm) +BCR(tm).
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Total principal reduction

The total outstanding principal amount on the asset pool has decreased with:

PRed(tm) = PD(tm) + PSR(tm),

and to make sure that the notes remain fully collateralised we have to reduce the outstanding
principal amount of the notes with the same amount.

After collecting the cash flow, the allocation of principal due to be paid to the notes is
supposed to be done sequentially, which means that principal due is allocated in order of seniority
according to the waterfall (see Table 3). In the beginning, principal due is allocated to the Class
A notes. Until the Class A notes has been fully redeemed no principal is paid out to the the
other classes of notes. After the Class A notes are fully redeemed, the Class B notes are started
to be redeemed, and so on.2 Note that we here are discussing the calculation of principal due
to be paid. The actual amount of principal paid to the different notes depends on the available
funds at the relevant level of the waterfall.

2.4 Ratings of ABSs

In order to evaluate an ABS under a fixed set of input parameters, we need to come to a rating
output that addresses either the Expected Loss an investor might incur or the probability of
default. The probability of default approach assesses the likelihood of full and timely payment
of interest and the ultimate payment of principal no later than the final legal maturity. The
expected loss approach is an assessment of the default probability and the loss severity given
default. In the sequel, we will use the expected loss approach.

After the collection and distribution of the cash flows as pointed out in the Section 2.3, we
evaluate the relative net present value loss and the weighted average life of each class of notes in
each default scenario simulation. The relative net present value loss for a note is calculated by
discounting the cashflows (both interest and principal) received on that note and by comparing
it to the initial outstanding amount on the note (Moody’s Investor Service (2006)):

RelativePVLoss(Scenario s) =
Nominal Initial Amount− PVCashflow(Scenario s)

Nominal Initial Amount
.

For a fixed rate note the discount rate will be the promised coupon rate. The weighted average
life for a note is calculated as follows:

M∑
m=1

Outstanding Note Amount(Time tm,Scenario s)

Original Note Amount× 12
,

where month M is the month ending with the legal maturity date tM .
Under the assumption to generate 214 cumulative default rate to get the convergence of our

model, after evaluating each scenario we calculate one Expected Loss and one Expected Average
Life. The Expected Loss is the average loss over all the scenarios. It is calculated by averaging
the Relative Present Value Loss representing the percentage loss in each scenario.

The Expected Loss is then given by:

ExpectedLoss =
1

Max Num. Scenarios

Max Num. Scenarios∑
s=1st Default Scenario

RelativePVLoss(Scenario s).

2There are two ways to allocated principal due: sequential and pro rata. In a pro rata scheme principal due
is allocated proportionally to the outstanding principal balance of the notes.
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The Expected Average Life (or expected weighted average life) of the note (in years) is the
weighted average of the times of the principal payments. It is the average time until a dollar of
principal is repaid. It is calculated as follows:

1

Max Num. Scenarios

Max Num. Scenarios∑
s=1st Default Scenario

Weighted Average Life(Scenario s),

The rating of a note is found from Moody’s Idealised Cumulative Expected Loss Table, which
maps the Expected Loss and the Expected Average Life combination to a specific quantitative
rating. An example of such a table is given in Moody’s Investor Service (2000).

Summarizing, under the assumption that the setting of the input parameters has been fixed,
at the beginning we generate 214 cumulative default rates, a values, from the normal inverse
distribution and we run the model for each of them. Following, by using an average over all
these scenarios we come up to a single rating which provides one evaluation of ABSs model
associated to the fixed setting of input parameters.
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3 GLOBAL SENSITIVITY ANALYSIS

We have already seen that the assessment of the ABSs is based on a quantitative model, already
explained, containing some input parameters whose values are affected by uncertainty. This
uncertainty propagates through the model and generates uncertainty in the rating output. We
are going to fill the need of investigating the rating sensitivity with respect to input assumptions
with the help of sophisticated methods. By using global sensitivity analysis3 (SA), we want to
investigate on this uncertainty. In general terms, in fact, global sensitivity analysis is the study of
how the uncertainty in a model input affects the model’s response and investigates the different
sources of uncertainty in the model inputs. Different sensitivity analysis techniques can be
followed to test the sensitivity of a model, ranging from global variance method (see Saltelli
(2002), Saltelli et al. (2008) and Saltelli et al. (2004)), which decomposes quantitatively the
total output variance into contributions of each input, to the simplest class of the screening
tests which provides a qualitative information by varying one factor at a time.

The rating procedure described so far is based on the assumption that all the input values are
fixed at the beginning and we get one evaluation of the ABSs model associated to this setting of
parameters providing one single rating for each tranche. Now, the start point of the sensitivity
analysis is to evaluate ABSs model several times by using several settings of input parameters
in order to take into account that each input can assume a discrete number of values within
their ranges: we generate several values for the input factors and for each of them we evaluate
the model as has been explained in Section 2. The first class requires a high number of SA
model evaluations and an extreme computational cost but we take advantage of using it because
we get the contribution of each input factor to the variance of the output taking into account
the interactions among factor. Within the screening methods, elementary effects method (EE
method) identifies important factors with few SA simulations. It is very simple and easy to
implement and the results are clear to be interpreted. It has been introduced by Morris (1991)
and has been refined by Campolongo and co-workers in Campolongo et al. (2007).

Because of the ABSs structure’s complexity, our model is computationally expensive and the
EE method is very well suited to screen the input space in a first step. All the not influential
factors will be determined and their values will be fixed without affecting the output variance of
interest. Following, the variance based method will be applied to quantify and to distribute the
uncertainty of our model among the parameters identified to be influential by the elementary
effect.

3.1 Elementary Effects

The Elementary Effect (EE) of a specific input factor is the difference in the model output
when this particular input factor is changed, while the rest of the input factors are kept constant.
The method is thus based on one-at-a-time sensitivity analysis. However, in the EE method the
one-at-a-time analysis is done many times for each input, each time under different settings of the
other input factors, and the sensitivity measures are calculated from the empirical distribution
of the elementary effects.

Let us assume that there are k uncertain input parameters X1, X2, . . . , and Xk (assumed
to be independent) in our model. Examples of input parameters are the mean and standard

3In the literature, most of the sensitivity analysis is based on derivatives. It is the so called ’local sensitivity
analysis’ where the factor’ importance is investigated by derivatives of the output with respect to that factor.
The term ’local’ refers to the fact that all the derivatives are taken at a single point in the input space. Local
techniques cannot be used for the robustness of model unless the model is proven to be linear or additive.
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deviation of the default distribution.
To each input factor we assign a range and a distribution. For example, we could assume

that X1 is the mean of the default distribution and that it takes values in the range [5%, 30%]
uniformly, that is, each of the values in the range is equally likely to be chosen. We could of
course use non-uniform distributions as well, for example, an empirical distribution.

These input parameters and their ranges create an input space of all possible combinations
of values for the input parameters. To apply the EE method we map each of the ranges to the
unit interval [0, 1] such that the input space is completely described by a k-dimensional unit
cube.

In order to estimate the sensitivity measure which is able to detect input factors with an
important overall influence on the output, a number of elementary effects must be calculated for
each input factor. We build r trajectories in order to compute r elementary effects (see Morris
(1991)). Each trajectory is composed by (k + 1) points in the input space such that each input
factor changes value only once of a step equal to ∆. A characteristic of this design is that the
points on the same trajectory are not independent and in fact two consecutive points differ only
in one component. Points belonging to different trajectories are independent since the starting
points of the trajectories are independent.

Figure 5: Trajectory in the input space.
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Once a trajectory has been generated, the model is evaluated at each point of the trajectory
and one elementary effect for each input factor can be computed.

The EE of input factor i is as follows:

|EEi(X
(l))| =

|Y
(
X(l+1)

)
− Y

(
X(l)

)
|

∆
(4)

By randomly sampling r trajectories, r elementary effects can be estimated for each input.
Usually the number of trajectories, r, depends on the number of factors and on the computational
cost of the model and it has been proven that the best choice is to use 10 trajectories (see Saltelli
et al. (2008), and Saltelli et al. (2004)). See Campolongo et al. (2007), for the all details about
the design that builds the r trajectories of (k + 1) points in the input space.

Starting from the absolute values of the elementary effects, we introduce the sensitivity
measure of each input that can be used to assess the importance of each factor in the model:

µ∗
i =

∑r
j=1 |EEj

i |
r

. (5)

Higher µ∗
i value, more important factor i.

3.2 Variance based method

Partitioning the output variance of the model gives a way of performing sensitivity analysis.
The idea is the decomposition of the variance into contributions of each input factor.

Let us assume that there are k uncertain input parameters X1, X2, . . . , and Xk in our model
and to each input factor we assign a range and a distribution. For example, we could assume
that X1 is the mean of the default distribution and that it takes values in the range [5%, 30%].
If we knew the value for the input X1 (for example to be equal to x∗i ), we could calculate the
conditional variance:

V (Y |Xi = x∗i )

and it will be a good sensitivity measure.
The point is that the real value of an input factor is unknown and each input factor can

assume a discrete number of values through its range. In order to take into account that each
input factor has distributed accordingly to some distribution, the model is run different times
by varying the factors among a set of values. To generate the set of input values, we map the
ranges to the unit interval [0, 1] and all the values are sampled quasi random by using Sobol’
sequences. By averaging the conditional variance over all possible values for the factor Xi, we
overcome the problem of do not know the real value for the input Xi:

EXi(VX−i(Y |Xi))

.
Let us suppose Xi to be an important factor, thus we expect a small value of VX−i(Y |Xi).

In fact, fixing Xi reduces appreciably the variance of the output leading to a small value of the
EXi(VX−i(Y |Xi)), the expected reduced variance achieved fixing Xi.

Note now that the following variance decomposition is always true:

EXi(VX−i(Y |Xi)) + VXi(EX−i(Y |Xi)) = V (Y ). (6)
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The first term of the Equation 6 is called the residual and the second one is the main effect. We
have already shown that an influent factor is associated with a small value of EXi(VX−i(Y |Xi))
which is the residual in a general variance decomposition formula. This implies that the main
effect will be large in an influent factor. Thus, we can use VXi(EX−i(Y |Xi)) as a sensitivity
measure providing an estimate of the individual effects of the factors. Normalizing by using the
unconditional output variance V (Y ) we obtain the First Order Sensitivity Indices:

Si =
V (E(Y |Xi))

V (Y )
(7)

They represent the main effect contribution of each input factor to the variance of the output.
Si can be demonstrated to be the output variance removed when we learn the true value of a
given input factor Xi. Thus, it identifies factors that lead to the greatest reduction of the output
variance. When

∑k
i=1 Si = 1 the inputs do not interact and the model is purely additive. This

means that the effect of two or more inputs on the output can be simply expressed by the sum of
their single effect. When

∑k
i=1 Si < 1, the interactions are part of the model and the first order

sensitivity index is not more able to explain the entire variance of the output. Higher order
indices have to be taken into account. For instance, the Second Order Sensitivity Index,
Sij , quantify the extra amount of variance corresponding to the interaction between inputs i and
j that is not explained by their individual effects. (For more details see Saltelli (2002), Saltelli
et al. (2008), Saltelli et al. (2004), and Kucherenko and Mauntz (2005)). The following relation
has been demonstrated to hold:

1 =
∑
i

Si +
∑
i

∑
j>i

Sij + ...+ S12...k. (8)
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4 UNCERTAINTY AND SENSITIVITY ANALYSIS RESULTS

In this section, we feel the need of analysing more in depth the ratings addressing the loss an
investor might suffer, to improve the assessment of the risk embedded in ABSs structure.

Without loss of generality, the investor is assumed to be informed about the structure pre-
sented in Section 2.1, so that all these features have been fixed and they have been supposed do
not affect the output variance of interest when evaluating this financial instrument. According
to Section 2.2, the default distribution of the pool at maturity has been assumed to follow a
Normal Inverse and the default curve over time has been assumed to be modelled by the Logistic
function. We have already underline how these distributions are characterised by input param-
eters which are unknown and have to be given by expert opinions or estimated from historical
data. Moreover, in order to take into account the recoveries of the defaulted assets in the pool
we need to introduce in our model some assumptions on the recovery rate and the recovery
time. Under these settings, the modelling of ABSs introduces an exposure to parameter uncer-
tainty4 which comes from the uncertain inputs of both distributions5 and from the assumptions
on default timing and on recoveries, since the resulting rating depends heavily on their values
assumed true:

• the mean (µcd) and the standard deviation (σcd) of the Normal Inverse distribution;

• b, c, and t0 in the Logistic Function;

• the recovery rate (RR) and the recovery lag (TRL).

Each one of these parameters has been assumed to be uniformly distributed over their re-
spectively ranges of variation which have to be fixed at the beginning. The inputs factors and
their ranges have been summarised in Table 4.

Parameter Range

µcd [5%, 30%]

Coeff.V ariation (σcd
µcd

) [0.25, 1]

b [0.5, 1.5]

c [0.1, 0.5]

t0 [T3 ,
2T
3 ]

TRL [6, 36]

RR [5%, 50%]

Table 4: Ranges for the uncertain input factors.

Some motivation to our choice of ranges is provided as follows:

Ranges associated with µcd and σcd

The mean and standard deviation of the default distribution are typically estimated using his-
torical data provided by the originator of the assets (e.g. see Moody’s Investor Service (2005)
and Raynes and Rutledge (2003)). In our SA we will assume that the mean cumulative default

4We do not have model uncertainty.
5We remind here, that the Logistic function’s parameter a is the expected cumulative default rate which has

to be sampled from the Normal Inverse distribution.
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rate at maturity T (µcd) takes values in the interval [5%, 30%]. This is equivalent to assume
that the probability of default before T for a single asset in the pool ranges from 5% to 30%.
(Recall that the mean of the Normal Inverse distribution is equal to the probability of default
of an individual asset).

We make the range of the standard deviation (σcd) a function of µcd by using a range for
the coefficient of variation, σcd/µcd. This gives us the opportunity to assume higher standard
deviation (i.e. uncertainty) for high values of the default mean than for low values of the mean,
which implies that we get higher correlation in the pool for high values of the mean than for low
values, see Figure 6.
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Figure 6: Implied correlation versus coefficient of variation.

Ranges associated with b, c, and t0 in the Logistic Function

The parameters can be estimated from empirical loss curve by fitting the Logistic curve to a
historical default curve (see Raynes and Rutledge (2003)).

Because we want to cover a wide range of different default scenarios we have chosen the
following parameter ranges:

• c ∈ [0.1, 0.5];

• t0 ∈ [T3 ,
2T
3 ];

• b ∈ [0.5, 1.5].

Inspecting the behavior of the Logistic functions in Figure 4 provides some insight to possible
scenarios generated with these parameter ranges and gives an intuitive understanding of the
different parameters influence on the shape of the curve.

Ranges associated with Recovery Rate and Recovery Lag

Recovery rates and recovery lags are very much dependent on the asset type in the underlying
pool and the country where they are originated. For SME loans, for example, Standard and
Poor’s made the assumption that the recovery lag is between 12 months and 36 months depending
on the country (see Standard and Poor’s (2004)). Moody’s uses different recovery rate ranges for
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SME loans issued in, for example, Germany (25%− 65%) and Spain (30%− 50%), see Moody’s
Investor Service (2009).

The range associated with the recovery lag TRL has been fixed to be equal to [6, 36] months
and with the recovery rate to be equal to [5%, 50%].

Since the resulting ratings depends strictly on input values used when running our model, in
order to take into account that these inputs assume a discrete number of values through their
ranges which have been fixed above, we evaluate ABSs model under several parameter settings.
As the first, we obtain information on the uncertainty in the model having a look at the empirical
distribution of the ratings over all the model evaluations.

4.1 Uncertainty analysis

Uncertainty analysis quantifies the uncertainty in the output due to the uncertainty in the input
parameters. The inputs and their ranges create an input space of all their possible combinations.
We want to explore this input space effectively in the sense of not only exploring the center of
the input space but also the corner and the edges. To achieve this, the sample input values will
be generated from their ranges by using Sobol’ sequences (see Section 2.2).

Under each input values combination, we evaluate the ABSs model and we provide a single
rating for each tranche6. Figure 7 shows the rating empirical distribution in each one of the
three notes after analysing several settings of input parameters.
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Figure 7: Moody’s Ratings empirical distribution obtained by 80 simulations.

All three histograms show evidence of dispersion in the rating outcomes. The dispersion
is most significant for the mezzanine tranche resulting to be no reliable due to the oscillation

6According to Section 2, we remind that in order to get just one rating we need to run our model 214 times,
under the same setting of parameters.
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between all the ranges of variation. This analysis points out that the problem of providing a
credible rating gets more difficult for the mezzanine tranche; the uncertainty is too wide and
the possibility of failure in the rating determination must be reduced. The senior and the junior
tranche behaves in a more stable way: we get ratings with low degree of risk at 86% of time
in the A notes, and the C notes result to be unrated7 35% of time. Here we want to underline
that we are not interested in getting a good rating, for example Aaa, for the tranches. The
analysis tries to assess the reliability of the outcome understanding the dispersion of the rating
distribution. As a measure of the ratings dispersion we look at the interquartile range, which is
defined as the difference between the 75th percentile and the 25th percentile and it is completely
independent on the quality of the ratings. We look just at the variability. Ratings percentiles
are provided in Table 5. It does not come as a surprise that this difference is the highest for
the B notes, 9 notches, given the very dispersed empirical distribution shown in Figure 7. From
Table 5, we can also conclude that the interquartile range is equal to five and three for the A
notes and the C notes, respectively.

Percentile Interquartile Range

Note 25 50 75 80 90 95 Number of notches

A Aaa Aa1 A2 A3 Baa3 Ba1 5

B A2 Ba1 B2 B3 Caa Caa 9

C B2 N.R. N.R. N.R. N.R. N.R. 3

Table 5: Rating percentiles and interquartile ranges.

This dispersion in the rating distribution of course is a result of the uncertainty in the
expected losses and expected average lives which underlie the ratings of each note. We have
already seen in fact, how we map the expected loss and the expected average life into a rating
by using the Moody’s Idealised Cumulative Expected Loss Table.

Summarizing, for each single setting of input parameters we can provide a qualitative rating
which is associated to two quantitative outputs, expected loss and expected average life. To get
an understanding of the relationship between all of them, we can use scatter plots. Since the
Figure 8, Figure 9, and Figure 10 show that there exist a positive correlation, we can conclude
that the expected losses and the expected average lives are driving the rating outputs to the
same direction. The 95th percentile of the expected loss and of the expected average life, for
example, generates the 95th percentile of the ratings. This implies that instead of focusing
just on the ratings directly, we can focus on a set of expected losses and expected average lives
coming from the several input parameters settings used.

We investigate more in depth on the ABSs model and it is interesting to find out which
uncertainties are driving these results. Following, we focus on the expected losses and the
expected average lives with the help of sensitivity analysis techniques in order to find out which
sources of uncertainty in the structure are the most responsible.

4.2 Sensitivity analysis

Sensitivity analysis assesses the contribution of each input parameter to the total uncertainty
of the outcome. As we have already seen, our model is computationally expensive due to the

7This is not surprising because it is well know that the junior tranche is the speculative one so that the investor
is supposed to be aware of C notes to be highly speculative and typically suffer significant losses due to the high
uncertainty.
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Figure 8: Expected Loss, Expected Average Life, and Ratings for the senior tranche.
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Figure 9: Expected Loss, Expected Average Life, and Ratings for the mezzanine tranche.

ABS structure’s complexity so that it is wise to screen the input space in a first step. We start
by using the elementary effect method; all the not influential parameters will be determined
and their values will be fixed. Following, the variance based method will be applied to quantify
and to distribute the uncertainty of our model among the parameters identified to be influential
previously.
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Figure 10: Expected Loss, Expected Average Life, and Ratings for the junior tranche.

The start point for both of them, is to run the model different times in order to take into
account that each input can assume a different value: for each parameter setting of the input
factors, we evaluate the model. The number of SA evaluations to get sensitivity analysis results
depends on the technique used. We remark here that the ABS model runs 214 times to provide
one rating under a single set of parameters.

In the elementary effect method, we select 80 settings of input parameters and we run
the model for each of them8. In the variance based method, we select 28 settings of input
parameters.9

4.2.1 Elementary Effect

The elementary effect method provides one sensitivity measures, the µ∗, to rank each input
factor in order of importance. We have already said: higher µ∗

i value, more important factor i.
In Figure 11, Figure 12, and Figure 13 bar plots visually depict the rank of the several input
factors using 80 settings of input values. The least influential factors across all outputs are the
recovery lag and the Logistic functions’s b parameter and hence they could be fixed without
affecting the variance of the outputs of interest and therefore the ratings to a great extent. All
the other parameters are influential and among them, the mean of the default distribution (µcd)
is clearly the most important input parameter over all for all three notes. It is characterized
by high µ∗ values for both the Expected Loss and the Expected Average Life of all the notes.
This highlights the strong influence the mean default rate assumption has on the assessment of
the ABSs. The only exception from ranking the mean default rate as the most influential input

8We apply the method with using r = 10 trajectories of 4 points. Having k = 7 input parameters the total
number of SA model evaluations is 80 (N = r(k + 1)). This choice has been demonstrated to produce valuable
results in a general application of the sensitivity analysis.

9This choice has been demonstrated to produce valuable results in a general application of the variance based
method (see Ratto and Pagano (2010 in press)).
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factor is the Expected Loss of the A notes. Here the coefficient of variation is ranked the highest
with the recovery rate as second and the mean default rate as third.

The input Coeff.V ariation and RR are always influential but with a lower µ∗ value than
the µcd. The t0 and c parameters are not influential in some notes but influential in some others
so that they cannot be fixed without affecting the output variance of interest.
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Figure 11: Bar plots of the µ∗ values for the A notes.
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Changing the thickness of junior tranche

So far, we have highlighted a problematic point concerning with the mezzanine tranche. It
results to be extremely sensitive to the choice of parameters leading to the conclusion of rating
to be not robust and instable. What happens improving the credit enhancement for the B notes
such to decrease the probability that the holder of this tranche will lose a significant part of the
investment? Do the uncertainty and sensitivity results change? Does the mezzanine tranche
continue to be extremely sensitive to the choice of parameter values or are we increasing the
stability and robustness of the rating?

We focus on understanding the role of the thickness for the junior tranche in affecting the
rating in the mezzanine tranche. Let us suppose to increase the initial principal amount of the
junior tranche keeping the principal amount for the mezzanine tranche (this leads to change the
principal of the senior tranche).

Class of Note Initial Principal Amount

A (Senior) 76,000,000

B (Mezzanine) 14,000,000

C (Junior) 10,000,000

Table 6: New structural characteristics

Figure 14 shows the empirical distribution of the ratings giving information on the uncer-
tainty in the new structure. Unless improving the credit enhancement of mezzanine tranche,
too much uncertainty affects again the B notes leading this tranche to be not reliable because
of the oscillation of the ratings. The problematic point concerning with the B notes seems not
to be eliminated.
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Figure 14: Moody’s Ratings empirical distribution obtained by 80 simulations.
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Bar plots in Figure 15, Figure 16, and Figure 17 depict the rank of the inputs accordingly
to the µ∗ values for the new structure.
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Figure 15: Bar plot of the µ∗ values for the A notes.
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Figure 16: Bar plot of the µ∗ values for the B notes.
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Figure 17: Bar plot of the µ∗ values for the C notes.

The SA results are consistent with that ones obtained for the original structure. Unless
increasing the credit enhancement for the mezzanine tranche, its extreme sensitivity does not
change. The uncertainty in the ratings of the mezzanine tranche continues to be rather high.
This indicates we should improve our knowledge in order to be able to reduce the risk of failure
in a rating determination.
The exploration of the inputs space by using the EE method leads to the conclusion that among
all seven input factors just five of them (µcd, Coeff.V ariation, RR, t0, and c) play a major
role in determining the uncertainty in the output rating. This leads to the need of including
them in a more sophisticated analysis. We therefore proceeded to perform a more quantitative
sensitivity analysis in order to assess the importance of each factor by computing its contribution
to the variability of the output.
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4.2.2 Variance Based

In the elementary effect analysis performed above, the EE method has selected five factors (µcd,
Coeff.V ariation, RR, t0, and c) out of seven to play a major role in determining the uncertainty
in the output rating. By using variance based method we calculate the exact percentage of the
output variance removed by learning the true value of these input factors taking into account
the individual effect and the interactions in which each of these factors is involved.

We select now 28 settings of input parameters, we run our model for each of them and finally
we obtain the first order sensitivity indices. Figure 18 depicts a clear decomposition of the
output variance highlighting the main contributions due to the individual input parameters.

17%

11%

7%

5%

59%

Expected Loss − Original Structure

 

 12%

13%

10%

24%
5%

36%

Expected Average Life − Original Structure

 

 

62%
9%

8%

3%
2%

15%

A notes

64% 7%

10%

4%
2%

13%

C notes

73%

10%

7%

9%

B notes

74%

9%

8%

8%

S
1
 − Mean Normal Inverse

S
2
 − Coeff. Variation

S
3
 − Recovery Rate

S
4
 − c of Logistic Function

S
5
 − t

0
 of Logistic Function

S
ij...

Figure 18: First order sensitivity indices for the original structure.

For the mezzanine and junior trenches the mean cumulative default, µcd, is clearly contribut-
ing the most to the variance, accounting for approximately more than 60% and more than 70%,
respectively. The uncertainty analysis performed at the begging has pointed out that the un-
certainty in the mezzanine tranche is too wide leading to difficulties in a rating determination.
Now, the first order sensitivity indices detect that it is possible to handling with the difficult
of providing a credible results for the mezzanine tranche. Improving the knowledge of the µcd,
we can reduce the variability of the output of more than 60%. For the senior tranche the most
important contributions to the output variance come from interactions between input factors
indicating that the first order indices cannot solely be used to identify the most important fac-
tors and more sophisticated SA measures must be used. When interactions are involved in the
model, we are not able to understand which input is the most responsible of them just using
the main effect contribution. Let us have a look at the second order sensitivity index. Figure 19
depicts a new decomposition of the variance including the contributions due to the interactions
between two input factors. Now, the mean cumulative default, µcd, is clearly contributing the
most to the variance in all the three notes. Less than 5% for the mezzanine and junior tranche
and less than 15% in the mezzanine tranche refer to interactions among more than two factors.
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Figure 19: First and second order sensitivity indices for the original structure.

Summarising the results found out by sensitivity analysis performed above, two parameters,
TRL and b, were non-influential and therefore can be fixed to constant values. Among other
parameters, Figure 20 shows that the most influential parameter is the mean cumulative default
which is the main contributor to the uncertainty in the output with respect its main effect and
the interaction effect. As this is a controllable factor, we would be encouraged to carry out
further analysis searching for the optimal value of this factor in order to reduce the uncertainty
in the analysis outcome. We would not need to complicate the model because we are already
aware of the source of the variability in the model. According to a theoretic approach, if we
would assess the true value of the mean cumulative default we could eliminate the most of the
uncertainty in the model. In practice, this true value is unknown to us and it is unfeasible to
find it. Unless we cannot eliminate the uncertainty in our model, at least now we are aware of
it when evaluating ABSs and we know where it comes from: in particular this holds true for the
mezzanine tranche. Having this in mind we find a way to live and to encompass this uncertainty
in the ABSs model.
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5 Global Rating

In the previous sections we saw that the uncertainty in the input parameters propagates through
the model and generates uncertainty in the outputs. By using sensitivity analysis we have
investigated on it in order to quantify this uncertainty and identify their sources when rating
ABSs. If we knew the true value of the most important inputs, we could eliminate the most
of the variability in the model but in practise, these true values are unknown to us and it is
unfeasible to find them. This implies that we have an intrinsic problem in the ABSs evaluation
and having this in mind we try to find a way to live and encompass the uncertainty.

We propose a new rating approach that should take into account the uncertainty and should
be more stable reducing the risk of cliff effects10 when assigning ratings to tranches. The global
rating is the novel strategy which assigns the ratings according to the dispersion of the credit
risk giving one answer of a way forward for the rating of structure finance products.

The global rating procedure is basically the same as the one used for the uncertainty analysis
and sensitivity analysis:

1. Identify the uncertain input factors, their ranges and distributions;

2. Generate several settings of input parameters in the input space;

3. For each setting run the model and give out a rating of each note;

4. Derive the global rating of each note.

5.1 Methodology

The main question is how to pick the global rating of the ABSs tranches. The idea is to
derive it from the empirical distribution of ratings generated by several settings of input values
analysed in the sensitivity analysis. The important point is that this procedure is independent
of which rating methodology is used to derive the rating, this is, if it is based on expected loss
or probability of default.

In order to take into account the uncertainty rather than using a single ratings which is very
accurate but may easily change when changing one input value which is of course uncertain, we
would rather define five global rating classes, contained one in the other, that reflect a range
of possible credit risks and incorporate several underlying ratings resulting to be more stable.
This global rating is given in a new scale11: A, B, C, D, and E. The new scale is superimposed
on a rating scale used by a rating agency or by a financial institution and it is based on a
percentile mapping of the underlying rating scale, that is, to assign a global rating to a tranche
if a predetermined fraction of the ratings generated using the several settings of input parameters
is better than or equal to a given underlying rating.

Hence, to set up the global rating scale we first have to decide on the ranges of the credit
risk and of the underlying rating scale. A proposal of possible ranges for the global rating scale
A − E is provided in Table 7. The global rating B in Table 7, for example, indicates that the
credit risk is ranging from Low to Medium. The corresponding range in Moody’s rating scale
is Aaa−−Baa3. This informs the potential investor that the tranche shows low credit risk for
certain scenarios but that there are scenarios where the credit risk are on a medium level.

10the risk that a small change in one or several of the input assumptions generates a dramatic change of the
rating.

11This can be connected to the energy consumption scale.
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Secondly, we have to choose the fraction of rating outcomes that should be laying in the credit
risk range. As first attempt, under the global rating scale given in Table 7, we have defined the
scale with respect to the 80th percentile of the local rating scale (in this case Moody’s ratings).
This mapping is shown in Figure 21. From the graph one can see that to assign a global rating
B, for example, at least 80% of the ratings must be better than or equal to Baa3: the rating
Baa3 is the lowest one in the range of Moody’s ratings we have obtained 80% of the times.

Global Rating Credit Risk Range Moody’s

A Low A3–Aaa
B Low to Medium Baa3–Aaa
C Low to High Ba3–Aaa
D Low to Higher B3–Aaa
E Low to Highest N.R.–Aaa

Table 7: A proposal of global rating scale and the corresponding ranges in credit risk and in
Moody’s rating scale.

Aaa Aa1 Aa2 Aa3 A1  A2  A3  Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1  B2  B3  Caa Unr.
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Figure 21: Example of mapping from Moody’s scale to the global rating scale. The mapping is
based on the 80th percentile and the percentiles for each global rating is: A: A3; B: Baa3; C:
Ba3; D: B3; and E: N.R. (see Table 7).
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Using the percentiles of the ratings in Table 5 we can derive the global ratings of the three
notes. The global ratings based on the rating scale provided in Table 7 for different rating
percentiles are shown in Table 8. Under the assumption to use the rating percentile equal to
80%, we obtain global ratings to be A, D, and E for the senior, mezzanine and junior tranche
respectively. Note that this is just a first attempt.

Percentile

Note 75% 80% 90%

A A A B

B D D E

C E E E

Table 8: Global ratings for different percentiles.
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6 Conclusions

The valuation of different types of asset-backed securities (ABSs) have been in focus the last
years due to the enormous losses anticipated by investors and the huge amount of downgrades
among structured finance products. The assessment of the risk inherent in an ABSs structure
and how well this risks are mitigated is detected by the ratings. The ABSs evaluation with the
rating process is based on mathematical models containing a number of input variables whose
values are affected by uncertainty. The uncertainty in these variables propagates through the
model and produces an uncertainty in the ratings determination. The sensitivity of the rating
output with respect to input assumptions has become a major concern nowadays.

We focus on a large homogeneous pool of assets backing three classes of notes (senior, mez-
zanine, and junior). The assets are amortizing and are assumed to be defaultable. To model the
defaults in the pool we have used the Normal Inverse distribution to describe the distribution
of the cumulative pool default rate at maturity. The default curve, describing the cumulative
default rate’s evolution over time, has been generated by the Logistic function. The uncertain
input factors in the study are the mean and standard deviation of the default distribution; three
of the Logistic function’s parameters; and the recovery rate and the recovery lag.

The goals of this paper are two fold. Firstly, we enhance the understanding of the variability
of the ratings due to the uncertainty in the input parameters. We start working with uncer-
tainty analysis techniques to better assess and quantify the variability in the structured finance
product output due to the variability in the inputs. This analysis points out that the empirical
distribution for the ratings results to be dispersed. The problem of providing a credible rating
gets more difficult for the mezzanine tranche; the uncertainty is too wide and the possibility
of failure in the rating determination must be reduced. Due to this result, we advocate the
use of global sensitivity analysis to understand the main sources of output uncertainties and
how the uncertainty in the output can be allocated to the different sources of uncertainty in
the inputs. We quantify the percentage of output variance that each input factor is accounting
for and we also detect how interactions among input parameters affect the rating variability
exploring the whole input space. We answer to the following questions: Is the rating of an ABS
reliable? Where does the uncertainty come from, i.e. which input factors are more important
in determining the uncertainty in the rating response? Can I quantify the exact percentage of
the variability in the output that can be allocated to each input? We figure out that among all
input parameters, the Logistic function’s b and the TRL are not influential at all. The all other
inputs are influential and they cannot be fixed without affecting the output variance. Among
these, the most influential one is the mean cumulative default which is the main contributor
to the uncertainty in the output with respect to its main effect and to the interaction effect.
For the junior and mezzanine tranches, the main effect (without the interactions) of the mean
cumulative default contributes the most to the output variance accounting for approximately
more than 70% and 60% respectively. In the senior tranche the interactions play an important
role but anyway the mean cumulative default keeps to be the most influent parameters tak-
ing into account the contribution of its main effect and its interaction with the other inputs.
According to a theoretic approach, if we would assess the true value of the mean cumulative
default we could eliminated the most of uncertainty in the model. In practice, this true value
is unknown to us and it is unfeasible to find it. Unless we cannot eliminate the uncertainty in
our model, at least now we are aware of it when evaluating ABSs and we know where it comes
from: in particular this holds true for the mezzanine tranche where the empirical distribution
of the ratings result to be too much dispersed. Having this in mind we propose a way to live
and to encompass this uncertainty in the ABSs model.
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The second goal of the paper in fact is to work out a novel rating approach for the asset
backed securities called global rating, that takes this uncertainty in the output into account when
assigning ratings to tranches. In the global rating a new rating scale based on percentile is used
that indicates the range of the credit risk of an asset backed security. The global ratings should
therefore become more stable and reduce the risk of cliff effects, that is, that a small change in
one or several of the input assumptions generates a dramatic change of the rating. To set up the
global rating scale we first have decided on the ranges of the credit risk and of the underlying
rating scale. Secondly, we have chosen the fraction of rating outcomes that should be laying
in the credit risk range so that we have defined the scale with respect to the 80th percentile
of the local rating scale (in this case Moody’s ratings). Under the assumptions that are just a
first attempt, we obtain global ratings to be A, D, and E for the senior, mezzanine and junior
tranche respectively.
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Lévy processes: an application to asset backed securities. Radon Series on Computational
and Applied Mathematics 8, 183–204.

Kucherenko, S., 2007. Application of global sensitivity indices for measuring the effectiveness
of quasi-monte carlo methods. In: Proc. of the Fifth International Conference on Sensitivity
Analysis of Model Ouput. Budapest.

Kucherenko, S., 2008. High dimensional Sobol’s sequences and their application. Technical Re-
port - www.broda.co.uk.

Kucherenko, S., Feil, B., Shah, N., Mauntz, W., 2010. The identification of model effective
dimensions using global sensitivity analysis. Reliab.Eng.Syste.Saf.

Kucherenko, S., Mauntz, W., 2005. Application of global sensitivity indices for measuring the
effectiveness of quasi-monte calro methods. Computer Physic Communications.

Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., Shah, N., 2000. Monte carlo evaluation
of derivative-based global sensitivity measures. Reliab.Eng.Syste.Saf 94, 1135–1148.

Moody’s Investor Service, 2000. The lognormal method applied to ABS analysis. International
Strucutured Finance, Special Report.

Moody’s Investor Service, 2001. The combined use of quantitative analysis and statistical models
in the rating of securitization. International Strucutured Finance, Special Report.

Moody’s Investor Service, 2005. Historical default data analysis for ABS transaction in EMEA.
International Strucutured Finance, Rating Methodology.

Moody’s Investor Service, 2006. Moody’s ABSROMTM v 1.0 User guide. Technical Report.

Moody’s Investor Service, 2007a. Information on EMEA SME securitizations - Moody’s view
on granular SME loan receivable transaction and information guidelines. International Stru-
cutured Finance, Special Report.

Moody’s Investor Service, 2007b. Moody’s approach to rating granular SME transactions in
Europe, Middle East and Africa. International Structured Finance, Rating Methodology, 8
June 2007.

Moody’s Investor Service, 2009. V scores and parameter sensitivities in the EMEA small-to-
medium enterprise ABS sector. International Strucutured Finance, Rating Methodology.

37



March 25, 2011 Sensitivity Analysis for ABS

Morris, R. D., 1991. Factorial sampling plans for preliminary. Technometrics 33 (2), 161–174.

Ratto, M., Pagano, A., 2010 in press. Using recursive algorithms for the efficient identification
of smoothing spline ANOVA models. Advances in Statistical Analysis.

Raynes, S., Rutledge, A., 2003. The Analysis of Structural Securities: Precise Risk Measurement
and Capital Allocation. Oxford University Press.

Richards, F. J., 1959. A flexible growth function for the empirical use. Journal Experimental
Botany 10 (2), 290–300.

Saltelli, A., 2002. Making best use of model evaluations to compute sensitivity indices. Computer
Physics Communications 145, 280–297.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
Tarantola, S., 2008. Global Sensitivity Analysis. Wiley.

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2004. Sensitivity Analysis in Practice.
Wiley.

Standard and Poor’s, 2004. Credit risk tracker strengthens rating analysis of CLOs of European
SME loans. Structured Finance.

Standard and Poor’s, 2007. Principles-based methodology for global structured finance securities.
Structured Finance.

Verhulst, P. F., 1838. Notice sur la loi que la population suit dans son accroissement.
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